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On the nature of conjugate vortex flows 
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Conjugate solutions of the equation of swirling cylindrical flow are considered 
in the case where the ‘primary’ flow has constant axial velocity. Numerical 
solutions are exhibited, which suggest a division of primary flows into four classes, 
and some conditions governing membership of these classes are derived. Finally, 
the case when the governing equation is slightly non-linear is considered. 

1. Introduction 
This paper is an attempt to answer certain questions in the theory of vortex 

breakdown as propounded by Benjamin (1962), and expanded by Fraenkel 
(1967). In  his paper, Benjamin gives two examples of flows for which just one 
conjugate exists.t In  one of these examples, the velocity on the axis is greater in 
the conjugate flow, and in the other the velocity on the axis is less in the conjugate 
flow. One purpose of the present paper is to explain why this should be, and to 
find out whether two conjugate flows can exist for the same primary flow. The 
other is to investigate the behaviour of the curve I?, introduced by Fraenkel, 
from which important properties of conjugate flows can be derived. 

Consider an inviscid fluid of unit density in steady axisymmetric swirling flow, 
in an infinite pipe of circular cross-section and radius (2a)*. Let ( r ,  8, z )  be cylin- 
drical polar co-ordinates, (u, v, w) the corresponding velocity components, and 
put y = &r2. Then the stream function @ is defined by 

z,hy = ur, = -ru, 
and by @ = 0 on y = 0. 

where wA(y) > 0 on [0 ,  a]. Then 
Suppose that upstream a cylindrical flow A exists with velocity (0, wA(y), uiA(y)),  

@ A ( Y )  = j ; W A ( 7 ) d 7  

is a monotonic function of y. Let @A(a) = b, so that the volume flux through the 
pipe is 2nb. Let the circulation bedenotedby {Sn21g(y)}* so that Ig(y) = yvg2(y); 
and let the total head be denoted by HA(y), so that 

f l ~ ( y )  = Po +/;VA2(7)/27d7 + ~ ( V A ~  + w ~ ~ i ” ) ,  

where po is the pressure on the axis. 

one is physically relevant. 
t Although his equation (5.22) may have more than one solution for 6 in [0,  R ] ,  only 

40 Fluid Mech. 33 



626 A .  F. Sheer 

Functions H ( $ )  and I($) can then be defined parametrically for 0 < $ < b by 

H = HA(7),  I = IA(7) and $ = 

since $ A ( ~ )  is a monotonic increasing function on [O, a]. 
It is assumed that the flow A ,  known as the primary flow, is supercritical ac- 

cording to Benjamin's (1967) definition. This means that the flow A cannot sup- 
port standing waves of small amplitude, or, mathematically, that the equation 

with 

where 

has no negative eigenvalues y2. 

P ( Y )  = - H"{$A(Y)) + &Y-1~"{21.A(Y)). 

Then the equation governing steady cylindrical flow may be written as 

?kyy = H'(11.1- W I ' ( $ ) ,  ( l . 2a )  

with $(O) = 0, $(a) = 6. ( 1.2 b, c) 

For the derivation of equation (1.2) see Benjamin (1962, appendix §a). 
The primary stream function $A(y) must be a solution of the boundary- 

value problem (1.2). There may be other solutions, the stream functions of the 
so-called conjugate flows. Not every solution, however, can represent a physically 
realizable flow. It is necessary that $7J > 0 everywhere in (0, a), so that y($) is a 
single-valued function of $. This restriction also ensures that 0 < $ < b for 
0 < y 6 a :  this is necessary because the functions H($)  and I ($)  are only defined 
for 0 6 $ 6 6. Also, for the flow to be stable, it  is necessary that Iu > 0. These 
conditions are applied to the flows discussed in $92 and 3, but are abandoned in 
$4, which is primarily of mathematical interest. In  94, H($)  and I($) will be 
extended analytically to values of $ outside [0, b].  

Let the boundary condition (1.2 c) be replaced by 

$, (O)  = A. (1 3) 

If the functions ujA(7) and ~ ~ ( 7 )  are sufficiently smooth, they can be extended to 
all values of T in such a way that the initial value problem (1.2a,b) and (1.3) 
has a unique solution $(y, A)  on [0 ,  a] for all bounded values of h (Fraenkel 1967, 
appendix). 

For those values of h for which 

$(a,  A )  = 6, (1.4) 

$(y ,h )  is a solution of the boundary-value problem (1.2). Let the values 
of A for which this is so be {A,) where A, is defined by $A(y) = $(y,h,), and 
... A_, < A, < A, .... Then, following Fraenkel, define 

<(A)  = $.(a,h)-b (1.5) 

and ?/(A) = 1CF,(a.4, (1.6) 

and let' I? be the curve defined parametrically in the  plane by [ = [ ( A ) ,  
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7 = ~ ( h ) .  I’ is simple and smooth, and intersects t; = 0 a t  h = A,. Also, if ( 1 . 2 ~ )  is 
linear (i.e. H and I are both quadratic functions of It.), then (1.3) implies that 
@(y,A)  is a linear function of A, so that I’ is a straight line. It was shown by 
Fraenkel that the important properties of physical flows, viz. the change in 
flow force and whether or not the conjugate flow can support standing waves, 
are known when the form of I‘ is known. 

2. Computed solutions 
The equations (1.2u,b) and (1.3) were integrated numerically by the Adams- 

Bashforth process on the Cambridge University Titan Computer for certain 
primary flows, and the curve I’ plotted in each case. 

I n  $52-4, the primary axial velocity is unity, and the radius of the pipe is $, 
so that @A(y) = y, and wa(y) = 1 for 0 6 y Q 1.  

Then A, = 1,  and 
(2.1) 

so that H’($ )  - ky-lI’(@) = (1 -y-l@)H’(@). ( 2 . 2 )  

All the examples treated have the realistic feature 

vA/r --f constant as y -+ 0; 

i.e. the fluid has solid-body rotation on the axis of symmetry. 

jamin’s parameter N ,  defined by 
A convenient measure of how far a flow is supercritical or subcritical is Ben- 

N = (c+ + c-)/(c+ - c-) ,  

where c+( > 0) and c-( 5 0) are the propagation velocities in the main stream direc- 
tion of very long waves propagating with and against the flow respectively. 
For a supercritical flow we have c- > 0, N > 1, and for a subcritical flow we have 
c- < 0, N < 1 (see Benjamin 1962). 

Exumnple (a) 
The primary flow is given by 

tlA(y) = &(9y+6yz)j for o Q y < 1.  ( 2 . 3 )  

$ = H’(@)-&11’(*) = $(l-g-l@)(l+$). (2.4) 
Then 

I n  this case a conjugate flow exists for A, = 2.78, with $(y, A,) > $(y, 1) every- 
where in (0 , l ) .  There is no other conjugate flow. For the primary flow N = 1-10 
and for the conjugate flow N = 0.62 (see figures 1 and 2 ) .  

YV 

Example ( 0 )  

vA(y) = (4y-lGy2/15)$ for 0 < y < 1. 

The primary flow is given by 

Then 
(2.5) 

(3.6) 
40-2 
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I n  this case a conjugate flow exists for A_,  = 0.08, with @@,A_,) < @(y, 1) 
everywhere in (0 , l ) .  There is no other conjugate flow. For the primary flow N = 

1.03 and for the conjugate flow N = 0.52 (see figures 3 and 4). 

1 

0 0 5  1 

Y 

FIGURE 1.  Conjugate solutions of equation (2.4). 

1.5 1 

FIGURE 3. The curve I? for the primary flow D A ( Y )  = b(9y + By2)$, W A ( Y )  = 1 on 0 < Y < 1. 
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Y 
FIGURE 3. Conjugatc solutions of equation (2.6). 

1 = 3  

I 1 c 
0.05 0.1 0.15 

6 

O < y < l .  
FIGURE 4. The curve r for the primary flow TJA(Y) = (4y-16y2/15)4. w ~ ( y )  = 1 on 
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Example (c)  

The primary flow is given by 

ziA(y) = 34y-88y2+7y3)* for o Q y < 1. (2.7) 

(2.8) 
Then 

In  this case there are two conjugate flows: one for A_, = 0.4 and one for A, = 2.3. 
For the primary flow N = 1.05; for the conjugate flow with A = A-,, N = 0.65, 
and for the conjugate flow with A = A,, N = 0.81 (see figures 5 and 6) .  

$klYll = H’(@)-&g-lI’(@) = y ( l - y - 1 $ ) ( 1 - 3 $ + ~ $ ~ ) .  

3. The classification of conjugate flows 
(i) The only conjugate flows relevant to the physical problem are those where 

A = A_, or A = A,, for reasons given in Benjamin (1962, page 608). We may there- 
fore divide primary flows into four classes: 

Class 0-where no conjugate flow exists. 
Class Ia-where A,, but not A-,, exists. 
Class Ib-where A-,, but not A,, exists. 
Class 11-where both A,  and A_, exist. 
Example (a )  above is of class I a ,  example (b) of class I b ,  and example (c)  of 

class 11. If equation ( 1 . 2 ~ ~ )  is linear (i.e. if H‘(@) is constant), the flow will be 
of class 0, except when the homogeneous linear equation 

s,,+y-lH‘(@)s = 0, with ~ ( 0 )  = ~ ( 1 )  = 0 (3.1) 

happens to have an eigensolution, in which case every A corresponds to a con- 
jugate flow, since a n  arbitrary multiple of such an eigensolution may be added 
to the primary stream function $A = y. 

(ii) We now derive some necessary conditions for the existence of conjugate 
flows. The partial derivative $A of the function $(y, A )  defined by (1.2a, b )  and 
(1.3) satisfies 

$ A ~ ! u + { ~ - ~ ~ ’ ( $ ) -  ( l  -2/-’$.)H’’($)}$A = O? 

with A) = 0, @Ay(o? A )  = 1 ;  

so that for + = +(y, A,) = @A(y), if we define 

( A  - l)@,,(Y> A,) = X(Y9 A ) ,  

x satisfies X l Y u + P H ’ ( Y ) X  = 0, 

with X(0,h) = 0, X,(O,h) = A- 1. 

It is now possible to compare x ( g ,  A )  with the function 

&Y, 4 = $(Y? 4 - Y .  

&/, + y-lH’($ + Y) $ = 0: 

The function $(y, A )  satisfies 

(3.2) 

(3.3a) 

(3 .3b)  

(3.4) 

(3.5a) 
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with $(0 ,A )  = 0, #, (O,A)  = h- I. (3 .5b)  

If h = A,, so that $(y, A,) is the stream function of a conjugate flow, #(y, A,) 
also satisfies $( 1, A,) = 0. 

First, we note that  if the primary flow is supercritical, the function $A(y, A,) 
has no zero in (0,1] (see Benjamin 1962,§4.4; Fraenkell967, page go), and hence 
x(y, A)  has the same sign as h - 1 on (0,1]. 

From ( 3 . 3 ~ )  and ( 3 . 5 ~ )  we obtain 

x&y - QX),, = ? ) - w ’ ( Y )  - H”r# +Y))#X. 
Hence 

d7 
x3 g),, = ~ ~ { ~ ~ 1 ( 7 ) - - 8 1 ( 4 + 7 ) ) d X ;  (3.6) 

Also, from (3.36) and (3.5b) 

(a) Suppose that H”($) < 0 on [0,1] and that h > 1. Then both x and 
( H ’ ( 7 )  - H’(4  + T ) ) $  are positive on (0,1], so that the integral in (3.6) is positive. 
Hence $/x is an increasing function, and from (3.7) we see that # > x on (0,1]. 
Since x > 0, we must have #(l ,  A )  > 0, and a conjugate solution is impossible. 

( 6 )  Suppose that If”($) > 0 on [0,1] and that h < 1. Then both x and 
(H’(7)  - H’(# + 7 ) ) #  are negative on.(O, 11, so that the integral in (3.6) is positive. 
Hence #/x is an increasing function, and from (3 .7 )  we see that # < x < 0 on 
(0,1]. We must have $(l ,  A )  < 0, and a conjugate solution is impossible. 

Therefore we conclude: i f  H“($) < 0 on [0,1], no conjugate solution is  possible 
with A > A,. I f  H”($) > 0 on [0,1], no conjugate solution i s  possible with A < A,. 
For  a primary f low to belong to class 11, as defined above, H“($r) must change sign 
somewhere in (0,l) .  

Let us verify that our previous results are consistent with this conclusion. I n  
example (a )  of $ 2 ,  

so that no conjugate flow with A < A, can exist. I n  example (b) ,  

H”($) = p > 0, 

H”($)  = -2  < 0, 

so that no conjugate flow with h > A, can exist. I n  example ( c ) ,  

I?”($) = y( - 3+ 7$), 

which changes sign a t  $ = 3, so that conjugate solutions may exist on both sides 
of the primary flow. 

I n  Benjamin’s (1962) example 1, 

If”($) = K2 > 0, 
and the flow is of class la. 

(iii) It appears that the function H”($)  is important in determining the nature 
of conjugate flows. When HI’($) is positive, conjugate flows in $ 2 y are in some 
sense encouraged? and those in $ < y discouraged, and vice versa when H“($) 
is negative. The assumption that the primary flow is supercritical puts an upper 
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bound on the infimum of H'(y) on [0,1] [see (3.3a)l; in fact if H'(y) > ij?,,= 3-67 
on [0,1] the flow cannot be supercritical. It can be shown that the parameter N 
for the primary flow is simply related to H'(y).T In  fact, N 2  is the smallest positive 
eigenvalue of the equation 

with 

According to Benjamin (1965), in all flows where vortex breakdown has been 
observed, the conjugate flow has had a smaller velocity on the axis than the 
primary flow; i.e. the flow has been of class I b .  This is to be expected, as for real 
flows in pipes it is usually true that v,, < 0 and ulr decreases outwards, so that 
rv, < v, and hence 

syy + P!-'H'{$,,(y,>. = 0, 
s (0)  = s(1) = 0. 

U 2  vu 229 
)"2 )"2 r R  T 4  

H"($)  = r+V.WT++r_- < 0. 

4. Conjugate flows when the governing equation is slightly non-linear 
If UA(Y) = 4, W A Y )  = 1, (4.1) 

equation ( 1.2 a )  becomes 
$yy = a2(1 -Y-1$9), 

which is linear. The general solution is 

$9 = y+Ayq(B(Ty+) +By+Y1(2(Ty+). 

Solutions satisfying $9(0) = 0 and @(1) = 1 exist only if J1(2a) = 0, so that 
a = ij,,, where j,,, is the nth zero of J,. Moreover, the primary flow is subcritical 
when la1 > ij,,, and supercritical when  TI < +j1,,; when I C T ~  = ij,,, it is just 
critical. 

(4.3) 
If (T = *jl,l, 

$.(?I, 4 = Y+ ( A  - 1)a-ly+J,(2fJy9, 

and consists of the 7-axis ( = 0. 
Figure 7 shows the curve r corresponding to a primary flow 

where a = ij,,,. In  this case r is a double spiral. (The curve in figure 6 is part of 
such a spiral.) This raises the question: given a family of functions 

f(Y,  $9, 4 = H'($, 4 - i!r1T'(9+, 4 ,  
such that for E = 0 the problem (1.2) is linear, but still has conjugate solutions, 
how does I?, which is (say) a spiral for E =I= 0, reduce to the 7-axis as e + 0 ?  

Suppose that the primary flow is 

t Put W = 1 - c  and a = 0 into Benjamin's (1962) equation (A 24), noting that c+ and 
c- are the roots of N 2  = (1 - c ) - ~ .  
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where e is a small parameter. Then 

I ' ($)  = 2g2$+ 2e$g(e, $1, 

$Yl, = (1  - Y - W  (g2 + M t . 7  !4L 

say, so that ( 1 . 2 ~ )  becomes 

with $ ( O )  = 0, &(O) = A. 

FIGURE 7 .  The curve I? for the primary flow vA(y) = cry:( I --!/), w A ( y )  = 1 

Suppose that $(y, A )  can be expanded as a power series in e: 

W 

$ ( Y , 4  = r, E n $ n ( Y , 4 .  
n=O 

Substitut.e (1.7) into (4.6), putting 
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(n0t.e that gn is independent of $,). Then, equating powers of 6, we obtain 

with 

where (4.10) 

Therefore $o is the unperturbed solution (4.3), and equation (4.9), which is 
linear, may be easily solved by the method of variation of parameters. In  fact, 
the solution of (4.9) is 

$m = A,(y)y*J1(3q4) +B,(y)yq(sVyq,  (4.11) 

where 

.and 

I n  this way $,,, $1, . . . , can be found successively. 
We are primarily interested in the dependence of $ on h a t  the point y = 1.  

This depends on the form of the function g.  However, i t  can be said that if g1 
is a polynomial of degree m in $o, 9, will be a polynomial of degree a t  least 
r rm+ 1 in A ;  so that the power series (4.7) for $ is likely to fail when = O(e).  
It is then necessary to find some other way of attacking the problem (4.6). In  
general the form of the power series (4.7) will suggest a change of variables, which, 
when applied to the initial value problem (4.6), will allow an expansion in powers 
of 6 remaining valid for unbounded A. This rescaling will depend on the form of 
vl(y) in (4.5), and can be illustrated only for particular cases. 

Example: primary flow given by 

(4.12) 

When e = 1 and u = 4 this reduces to the primary flow given by (3.3) above. 
Now, (4.12) leads to the equation 

with 

Here g(s, 9) = g2$, so that 

From (4.3), 

and hence 

gn($) = for n z 1. 

F,(y) = - v ( A -  1)J l (2~y~){y*+(A-  l ) r 1 J l ( 2 q * ) ) .  

kn = y+  (A - P)a-ly*J1(2ay9, 

(4.13) 

(4.14) 
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Therefore A,, B,  and $, are quadratic in A, and in general $n is a polynomial of 
degree n + 1 in A, whose coefficients are easily found by integration. 

When cr = &jl,l = 1.916, so that the curve I? for the unperturbed flow reduces 
to the rpaxis, we find that 

(4.15) 1 A1 = 0*1325(h - 1) + 0*0028(h - 1)' 

B, = - 0*3254(h - 1) - 0*1339(h - 1)'. and 

Then, to first order in 8, 

} (4.16) 
< = { - 0*1342(h- 1) - 0*0552(h - 1)')~ 

7 = 1 - 0*4028(h - 1) + { - 0*1339(h - 1) - 0*0152(h - 1)')~. and 

Therefore, when E is sufficiently small, that portion of I? corresponding to bounded 
values of h - 1 can be replaced by a parabola cutting the r-axis at  the points 
h = 1 , ~  = 1 and h = - 1 . 4 3 1 , ~  = 1.9792 + 0.2358~. The success of this approxi- 
mation is demonstrated by figure 8. 

A= -5 t' l 

FIGURE 8. Comparison of exact and approximate curves I? for B = 0.08. -, curve obt>ained 
by direct integration of equation (4.13); - - -, curve obtained from equdon (4.16). 
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FIGURE 9. Comparison of exact and approximate curves r for E = 0.05, h % 1. ---, 
curve obtained by integration of equation (4.13) for large h ;  - - -  , curve obtained by 
integration of e q u d o n  (4.20). 
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